Kroki Administration Subsystem Based on
RBAC Standard and Aspects

Sebastijan Kaplar, Milorad Filipovi¢, Gordana Milosavljevi¢, Goran Sladi¢

Faculty of Technical Sciences, University of Novi Sad, Serbia
{Kkaplar, mfili, grist, sladicg}@uns.ac.rs

Abstract— This paper presents administration subsystem
that was developed to enable dynamic customization of
enterprise applications specified by our Kroki tool. Kroki is
a tool for participative development of enterprise
applications based on executable mockups. The
administration subsystem is based on standard RBAC
model for access control. It enables users to perform
previously authorized tasks by dynamically adjusting their
actions. Available actions are determined based on
operations, relationships and constraints, according to
RBAC. Every user role can access only specific parts of the
application that its role is entitled to, with the use of menu
adjusted especially for its needs. Dynamic adjustments of
available actions are implemented by our runtime engines
based on aspect-oriented approach.

l. INTRODUCTION

Enterprise applications usually have a large number of
users with different roles and responsibilities. For
example, a worker in a warehouse can access only
information about his warehouse. His superior can access
information about all warehouses in the application.
Financial director has the rights to access all available
subsystems.

Enterprise applications should be dynamically adjusted
to support specific needs of every user. In order to achieve
this, we need an administration subsystem that allows
specification of a working environment for each user
(menu structure, user rights, etc.). Also, we need the
architecture of the enterprise applications that can adapt to
the mentioned specification on the fly.

This paper presents the administration subsystem that
was being developed as a part of our Kroki tool [5, 7, 8]
and generic engines that allow run-time enterprise
application adaptation. Kroki (croquis — sketch) is an
open-source tool for participatory development of
enterprise applications based on executable mockups (see
Section 3 for details).

The administration subsystem is based on RBAC (Role
Based Access Control) standard for access control. RBAC
introduces user roles as an additional layer of indirection
between users and permissions. User roles can be created,
modified, or deleted based on the enterprise system
requirements, without the need to individually manage
privileges for every user. RBAC-based systems enable
users to perform previously authorized tasks, by
dynamically adjusting their actions. Actions are
determined based on operations, relationships and
constraints [1].

The paper is organized as follows. Section 2 reviews
the related work. Section 3 gives a short overview of our
Kroki tool and describes the administration subsystem

implementation. Section 4 presents an example of
dynamic adjustments. Section 5 concludes the paper.

Il. RELATED WORK

The paper [1] is one of the early papers that present a
family of RBAC models. These models are provided as a
common frame of reference for other research and
development in the area, and they are used as a starting
point for our work.

The paper [2] presents modeling and metamodeling of
access control policies. The described process spans three
meta-levels. At level M2, the policy metamodel is defined.
Using the policy metamodel, different policy models can
be applied at level M1, such as RBAC. PolicyDSL is used
at level MO for specifying actual access control policies in
a particular system, and policy model is used for
parameterizing the syntax of PolicyDSL.

In [3] the work is focused only on specifying the static
structure of RBAC, and utilizes standardized modeling
language (UML) and also integrates the policy
specification activity with UML design modeling
activities. Also, the task of capturing RBAC policies in
reusable patterns is described.

In [4] SecureUML is introduced. SecureUML extends
RBAC in order to add constraints on system states that are
associated with a UML model. Rules are allowed to be
restricted with OCL (Object Constraint Language)
conditions. Also, action hierarchies allow forming of
higher-level actions.

1. THE KROKI ADMINISTRATION SUBSYSTEM

The administration subsystem is developed as a part of
our Kroki tool (Figure 1). Kroki is a tool designed for
development of business applications based on executable
mockups. A mockup is a sketch of an application Ul (User
Interface).

Kroki uses mockups as a basis for automatic execution
and code generation for the enterprise applications. An
advantage of mockup tools is in their ease of use, which
allows end users to participate actively in the development
process using simple and intuitive notation [9]. Besides
mockups, Kroki also supports “classical” way of
application modeling, using its lightweight UML editor
[11.

Mockups execution is performed by two aspect-
oriented (AOP) engines for the web and desktop
applications. A basis for execution is application
repository that contains configuration files for the current
Kroki project. Configuration files are generated from the
current model using Kroki generators (Figure 2).
Although the engines could take this data directly from the

Kroki model, we choose XML files as an intermediate
step in order to provide independent functioning of the
specified applications, when deployed.

The administration subsystem is getting information
about specified application elements (forms, panels,
reports etc.) from the application repository. These
elements are observed as resources in access control
model.

Configuration files created by the administration
subsystem are also delivered to the application repository.
They are loaded during the engines start up and used as a
source for dynamic adjustment of the application based on

Dynamic access to the user rights and their activation in
appropriate moments is achieved with the use of AOP.
Kroki engines use AOP techniques in order to enable
easier integration of cross-cutting concerns imposed by its
tools. Also, AOP enables easier integration of the engines
with hand-written code which necessary for
implementation of complex business transactions and
reports.

A tool for creating personalized menus is also a part of
the administration subsystem. The tool helps in the
process of creating custom menus, defined for every user
role. Custom menu allows personalization of users
working environment.

=

user rights.

Kroki Mockup Te o= e |
File Edit Project Help 1
. = P T - b
s b o HH|"’P|£"}| Q) Q) | (Ao ~ |8 v‘_= A_‘I_II_AI_I|I £ = | e o
2 Projects |USEI x |Pnst x |CDmmEnt ® ;lCatEgury x ‘ Eorr e
I @ Workspace N || Panel
£1-{% Blog Comment J
== [IEEEEEIE) E)E]
e
Tie]
Content -
|
|
Advanced | persistent] link Link
Display format: i
Mandatory: _| Actions:
Representative: [d Ul 4 Ak Aggregation
Auto go: [[Command Windaw c[#) Calculation
Default value:
“ " L3
Selecting...
Figure 1. Kroki mockup tool. Icon for activation of the administration subsystem is marked with 1.
Prototype - - Cooperation Read/write files
specification | Command Window nghtwe!ght with external tools
UML editor Read/write objects
Model Importer —_—
Mockup editor UMLto EUIS
. XMI File
transformation
--f
Instance of Model Exporter
EUISDSL [E------ Model based on .
meta-model EUIS DSL Administration subsystem EUIS to UML | XMIFile
J, based on RBAC transformation .
e Generators for: Web AOP Engine //
execution
V£ Web app.
Db scheme, EJB, Menu, XML UI Application repository L) code
spec, Web resource, ... __
. Desktop
- Desktop AOP Engine Code Exporter [—=
app. code
Embedded o L _—
DBMS >
SQL code
Figure 2. Kroki architecture
number of users. The reason behind it is in the
A. RBAC

The administration subsystem is based on RBAC,
which is one of the most common access control models.
RBAC is largely spread in business systems with a large

introduction of user roles. User role is an additional layer
of indirection between users and permissions allowing the
grouping of users and privileges in logical units at the
higher level of abstraction. This enables simplified

specification of the user rights. RBAC model [3] is shown
in Figure 3.

Basic entities defined with RBAC model shown in
Figure 3 are sets of users, roles, objects, operations, and
permissions. A role is a job function performed by the
user. Object is an entity that contains or receives
information. Permission is an approval to perform an
operation (for example add, modify, remove) on the
object. Permission is defined abstractly and implemented
as a pair of permissions (objects, operations).

(RH)
SSD Role Hierarchy DSD

(UA) ‘ , (PA)
User Assignment
USERS

Permission Assignment
user_sessions

The permission for execution of a certain operation is
defined as a basic concept in RBAC. Associating
permissions with roles simplifies their management. Users
do not have direct permissions; they are obtained through
roles.

Figure 4 shows the administration subsystem’s UML
model. In Figure 4, classes (entities) and their
relationships in the administration subsystem are shown.
One of the features of the model are resources,
represented by the class Resource. Resources represent
application forms sketched using Kroki’s mockup editor.
Storing data into resources is performed automatically
through forms previously sketched in Kroki. Figure 4
shows that for each resource multiple permissions can be
defined (Permission class) while each permission can
have only one resource that results in one-to-many
relationship.

PRMS

Session_roles

Figure 3. RBAC Model

0.1
Role User
- name Sting | 0.° 0.7 |- : String
- desaiption : Sting - password : String
0.
0."
Resource Category Permission 0.
- name : Sting
\ \
\ \
] 0.. 0 0

super_resource sub_resource

o1 Opersticn

1.1 1.1

- name : Sting

Resource

- name : Sting
- link : Sting

Figure 4. Administration subsystem model

Also, there is a categorization of the resources.
Permission has one resource and one allowed operation
(class Operation) on that particular resource, for example:
add, modify, delete. For one resource, many permissions
with different operations may exist and when a new
operation is introduced it can add new permissions with
the newly introduced operation on the existing resource.
Roles (class Role) associate permissions with users.
Figure 4 shows that one role can have more permissions,

and one permission can have multiple roles that result in
many-to-many relationship. Identical is the relationship
between roles and users (class User).

B. Implementation

The administration subsystem is implemented as a
three-tiered desktop application. A presentation part is
implemented in Java using the Swing GUI library. The
middle tier, responsible for business logic, uses Hibernate
library for persistence.

AbstractHibernateDac o GenericDao - |StandardFom
/
o |Entity GenericStandardForm GenericToolbar
L GenericDataFanel
AbstractEntity e
GenericTablehModel
DefaultTableModel
<75
el GenericStandardFom : 2
- toolbar : BenesicTooloar
alsolE Genen1aol - model :GenericTablehodel
+ <<Constructors> GenericTablehlodel (Genriciao<T> dao, Sting calumnLatels() - table Table
+ fillData (§ void - dataPane| : GenericDataPanel
+ insertRow (T entity) void - fieldsFanel : JFanel
+ deleteRow (introw) woid - dao Generichzo
+ updateRow (T entity. introw) void - entity IEnity
- gethac () Genericlao<T> o
FieldLabels (JPanel panel) : St

o isCellEditable (int rom, inf column] beolean g :;m';mum;f_‘":;mp;"e) sn:::"

DefaultTeblehode!

{table)
oEE |

Figure 5. a) A sketch of a simple framework used for implementation
of the administration subsystem application b) Details for
GenericStandardForm and GenericTableModel classes

In order to support faster and easier development of the
administration subsystem Ul, we have developed a simple
framework presented in Figure 5. Classes
GenericStandardForm and GenericTableModel are used
for data presentation and manipulation of all persistent
classes in the middle-tier. Examples of administration
subsystems forms developed with this framework are
presented in Figure 6, 7, and 8. The framework code is
available as a part of the Kroki administration subsystem
at [11]

C. Integration with Kroki

After an enterprise application is sketched using the
mockup editor and/or the lightweight UML editor, it can
be executed using Kroki’s desktop or web engine. If user
rights and customized menus are not specified, the
application has a default menu that provides activation of
all developed application forms. This is suitable for the
development phase and requirements elicitation based on

prototypes, but before deployment, the application must
be customized to support every user role in the enterprise.

After launching, the administration subsystem is
supplied with an XML file that has a list of developed
resources (forms, reports, etc.) provided by the Kroki tool
in the application repository (Figure 3). Kroki is “aware”
of the administration subsystem’s existence, but the
reverse does not apply, in order to achieve a higher level
of independence of the administration subsystem. Once
the enterprise application is deployed, administrator
should manage users and user rights using only the
administration subsystem, with no need to access other
Kroki’s tools.

|£| Permission l&]
S EHD| e Dol d | L

Mame Operation Resource

addCity |add |City JfresourcesCity | -

MName™®
Operation® :add -

:City-I Jfresources/City -

Resource™

State: ADD

Figure 6. Permissions form

|£| Resource l&]
$EHD| el R|F

name link:

State fresources/State -

City fresources/City F

Enterprise fresources Enterprise E

endor fresourcesVendaor 1

Department [resources/Department | 4

Enterprise_departments fresources Enterprise_departments

Order fresources/Order

Invoice fresources/Invoice

OrderItem fresources/OrderItem

Payment fresources/Payment

Items_for_odrer fresourcesTtems_for_odrer

Category fresources/Category

Product fresourcesProduct

Stock fresourcesStock

StockKeepingUnit fresourcesStockKeepingUnit

Pricelist fresources Pricelist

PriceListitem [resources /Pricelistitem i

]
name® 4
lirk.
State: EDIT

Figure 7. Resources form

|£]| Role l&]
[s9d@lcc D+ X|F
MName Parent Role
interns
sUper users | |
B
Name™ admins b4
Parent Role - E]
State: EDIT

Figure 8. Roles form

The administration subsystem is storing user rights
information and menu specifications in its own database.
This information is provided to web and desktop engines
in order to perform dynamic adjustments during run-time.

D. The Web and Desktop Engines

The web and desktop engines are performing dynamic
adjustments using aspects. Kroki engines use aspect-
oriented programming techniques to enable easier
integration of cross-cutting concerns imposed by its tools.

The web engine is developed using restlets, so all of the
web classes extend RestletResource class and are located
in the resources package. Every resource class has
prepareContent method that is invoked when a client
request is sent to a particular resource and can be used to
attach aspect functionalities. Restlet resources use map
called dataModel to pass arbitrary data to HTML
templates, so once attached to prepareContent, aspect
can get access to the resource object and modify its
dataModel. DataModel is wrapped into HTML elements
using Freemarker templates (Figure 9).

GENERIC WEB ENGINE

APPLICATION
REPOSITORY

FREEMARKER
TEMPLATES

IC,

<html>

ASPECTS

Figure 9. Web engine architecture

Listing 1 shows an aspect that modifies the main menu
based on customization specified by the administration
subsystem. It is activated after user has logged in and
before menu is created in the application.

Login

HomeResource @ AdministrationAspect

« prepareContent(); setMenu();

Menu

a.-

child

prepareControls();

|

ViewResource

+ prepareContent();

Figure 10 Aspects can change the content before pages are rendered

Since the generic web engine is designed as a single-
page AJAX web application, once the user is logged in,
the interaction takes place on the home page and restlet
resource in charge of this page. So, in order to modify the
main menu creation process, we need to attach our aspect
to prepareContent method of HomeResource class.
Freemarker template looks up main menu list by the name
main_menu, so it will be the name by which we will put
our modified menu into dataModel (Figure 10). Listing 1
represent basic steps described above.

public aspect MainMenuAspect {

//Create the pointcut that intercepts PrepareContent

//method in Home resource and obtain home resource object

public pointcut setMenu({HomeResource homeResource) :
call{public void HomeResource.prepareContent()) &&
this(homeResource);

after (HomeResource homeResource):
setMenu(homeResource) {

User user = SessionAspect.getCurrentUser();

//0btain main menu list from AppCache

Arraylist<AdaptMenu> menus =
AppCache.getInstance().getMenulist();

List<UserRoles» roles = ..;
/f0Obtain user roles through query
if (roles.size() == 8) {
//Put default main menu to data model
homeResource. addToDataModel ("menu"”, menus);
else {
//Retrieve and put modified
//main menu to data model
AdaptMenu modified_menu = ..;
homeResource. addToDataModel ("menu”,
modified_menu);

Listing 1. Aspect for menu loading

Similar activities are performed for the application
forms in order to dynamically adjust their toolbar
according to the specified user rights. More details about
Kroki engines can be found in [10].

E. Menu Specification

The administration subsystem enables specification of
customized menu for every user role. Custom menu
allows personalization of users working environment.

Menus in administration subsystem are based on the
composite design pattern (Figure 11).

Menultem Submenu
- formMame : String - name : String 1.1
- menuitlame : String + add () parent
- activate : String + remowve {)
- panelType : Sthing + get(

Figure 11. Menu structure within administration subsystem

The menus are stored in an XML file and deployed to
the application repository. The tool for specification of
menus is shown in Figure 12.

r y
| @ admins users M interns

E} . User

=

o

- 1) Phone

- 4 Work
P # Address
= |, Company

----- # Separator
----- # Email

Add Menu][Add Menultem][Add Separator H Delete H Ok]
]

% L

—

Form .Stat!v]

Item Name ||

|t

Figure 12. The tool for menus specification

IV. AN EXAMPLE

This section shows an example of the run-time
adaptation of a business application according to the user
roles.

Figure 13 and Figure 14 depict the same form in the
web application. The depicted form is used by two groups
of users. The first group of users is allowed to add,
modify and remove data (see Figure 13), while the
second group of users is allowed only to view data in that
particular form (see Figure 14).

State X
O d » + &8
Serbia SRB
Germany GER
Japan JPN

Figure 13. User form with add/modify/delete permissions

O 4 »
Name Code
Serbia SRB
Germany GER
Japan JPN

Figure 14. User form with view permission

Similarly Figures 15 and 16 show the same menu
adapted for two different users. Available menu items are
determined by user roles. In the case presented in Figure
15. the user is entitled to all submenus in the given menu,
while in the case presented in Figure 16 the user is
allowed to access only a subset of menu items.

Teritorial

Enterprise

Vendor

Department

Enterprise departments

Figure 15. Menu with all the submenus shown

Enterprise
Enterprise departments

Figure 16. Menu with certain submenu restrictions

V. CONCLUSION

The paper presented the Kroki administration
subsystem and generic AOP engines that enable enterprise

application execution. The administration subsystem is
based on RBAC standard for access control. RBAC-based
systems enable users to perform previously authorized
tasks, by dynamically adjusting the availability of actions.

Dynamic application adjustment is based on the
application repository that contains configuration files and
generic AOP engines. Configuration files are generated
from the current Kroki model and the administration
subsystem and used as a specification for application
dynamic behavior.

Dynamic access to the user rights and their activation in
appropriate moments is achieved with the use of AOP.
AOP techniques enabled easier integration of cross-
cutting concerns imposed by different Kroki tools and
easier integration of the engines with hand-written code.
Also, AOP allowed clear separation of duty and insight
into expandable and easily readable code. Thanks to that,
integration of the administration subsystem with Kroki
performed seamlessly without the need to change the
original tool.

REFERENCES

[1] R. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman. Role-Based
Access Control Models, IEEE Computer (IEEE Press) Vol. 29,
Issue 2, pp. 38 - 47.

[2] B. Trnini¢, G. Sladi¢, G. Milosavljevi¢, B. Milosavljevi¢, Z.
Konjovi¢, ,,PolicyDSL: Towards Generic Access Control
Management Based on a Policy Metamodel“, SoMeT 2013,
Budapest, Hungary.

[3] D. Kim, I. Ray, R. France, N. Li. Modeling Role-Based Access
Control Using Parameterized UML Model, FASE 2004. LNCS,
vol. 2984, pp. 180-193

[4] T. Lodderstedt, D. Basin, J. Doser, “SecureUML: A UML-Based
Modeling Language for Model-Driven Security,” Proceedings of
the 5th International Conference on The Unified Modeling
Language, Dresden, Germany, September 30. - October 4. pp.
426-441, 2002.

[5] G. Milosavljevi¢, M. Filipovi¢, V. Marseni¢, I. Dejanovié. Kroki:
Interactive Development Of Business Application Based on
Mockups, Software Methodologies, Tools and Techniques 2013,
Budapest, Hungary, pp. 235-242

[6] M. Filipovi¢, Adaptive Architecture Of Web Application Based on
Aspects, Master thesis, University of Novi Sad, 2011

[7] Kroki, www.kroki-mde.net

[8] Kroki demo, http://youtu.be/r2eQrl1lbzA

[9] J. M. Rivero, J. Grigera, G. Rossi, E. Robles Luna, N. Koch,
“Improving Agility in Model-Driven Web Engineering”, CAiSE
Forum 2011, pp.163-170, 2011

[10] M. Filipovi¢, S. Kaplar, R. Vaderna, Z. Ivkovi¢, G. Milosavljevié,
. Dejanovi¢, Aspect-Oriented Engines for Kroki Models
Execution, submitted to ICIST 2015, Kopaonik, Serbia

[11] Kroki Administration Subsystem Source,

https://github.com/KROK Iteam/KROKI-mockup-
tool/tree/master/Kroki-Administration

https://github.com/KROKIteam/KROKI-mockup-tool/tree/master/Kroki-Administration
https://github.com/KROKIteam/KROKI-mockup-tool/tree/master/Kroki-Administration

